- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ma, Sixiang (3)
-
Wang, Yang (3)
-
Gan, Yifan (2)
-
Hui, Yujie (2)
-
Li, Tianxi (2)
-
Li, Yuke (2)
-
Lu, Xiaoyi (2)
-
Qi, Hao (2)
-
Ren, Xueyuan (2)
-
Yu, Miao (2)
-
Bond, Michael D. (1)
-
Zhou, Fang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Benchmark and system parameters often have a significant impact on performance evaluation, which raises a long-lasting question about which settings we should use. This paper studies the feasibility and benefits of extensive evaluation. A full extensive evaluation, which tests all possible settings, is usually too expensive. This work investigates whether it is possible to sample a subset of the settings and, upon them, generate observations that match those from a full extensive evaluation. Towards this goal, we have explored the incremental sampling approach, which starts by measuring a small subset of random settings, builds a prediction model on these samples using the popular ANOVA approach, adds more samples if the model is not accurate enough, and terminates otherwise. To summarize our findings: 1) Enhancing a research prototype to support extensive evaluation mostly involves changing hard-coded configurations, which does not take much effort. 2) Some systems are highly predictable, which means that they can achieve accurate predictions with a low sampling rate, but some systems are less predictable. 3) We have not found a method that can consistently outperform random sampling + ANOVA. Based on these findings, we provide recommendations to improve artifact predictability and strategies for selecting parameter values during evaluation.more » « less
-
Hui, Yujie; Yu, Miao; Qi, Hao; Gan, Yifan; Li, Tianxi; Li, Yuke; Ren, Xueyuan; Ma, Sixiang; Lu, Xiaoyi; Wang, Yang (, ACM SIGMOD'25)
-
Ma, Sixiang; Zhou, Fang; Bond, Michael D.; Wang, Yang (, Eurosys 21)null (Ed.)
An official website of the United States government

Full Text Available